Under investigation in this work is a generalized higher-order beam equation, which is an important physical model and describes the vibrations of a rod. By considering Lie symmetry analysis, and using the power series method, we derive the geometric vector fields, symmetry reductions, group invariant solutions and power series solutions of the equation, respectively. The convergence analysis of the power series solutions are also provided with detailed proof. Furthermore, by virtue of the multipliers, the local conservation laws of the equation are derived as well. Furthermore, an effective and direct approach is proposed to study the symmetry-preserving discretization for the equation via its potential system. Finally, the invariant difference models of the generalized beam equation are successfully constructed. Our results show that it is very useful to construct the difference models of the potential system instead of the original equation.