By an approximate subring of a ring we mean an additively symmetric subset X such that X·X∪(X+X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$X\\cdot X \\cup (X +X)$$\\end{document} is covered by finitely many additive translates of X. We prove that each approximate subring X of a ring has a locally compact model, i.e. a ring homomorphism f:⟨X⟩→S\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f :\\langle X \\rangle \\rightarrow S$$\\end{document} for some locally compact ring S such that f[X] is relatively compact in S and there is a neighborhood U of 0 in S with f-1[U]⊆4X+X·4X\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f^{-1}[U] \\subseteq 4X + X \\cdot 4X$$\\end{document} (where 4X:=X+X+X+X\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$4X:=X+X+X+X$$\\end{document}). This S is obtained as the quotient of the ring ⟨X⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\langle X \\rangle $$\\end{document} interpreted in a sufficiently saturated model by its type-definable ring connected component. The main point is to prove that this component always exists. In order to do that, we extend the basic theory of model-theoretic connected components of definable rings [developed in Gismatullin et al. (J Symb Log First View: 1–35, 2022, https://doi.org/10.1017/jsl.2022.10) and Krupiński et al. (Ann Pure Appl Logic 173.7(July):103119, 2022) to the case of rings generated by definable approximate subrings and we answer a question from Krupiński et al. (2022) in the more general context of approximate subrings. Namely, let X be a definable (in a structure M) approximate subring of a ring and R:=⟨X⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$R:=\\langle X \\rangle $$\\end{document}. Let X¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\bar{X}}$$\\end{document} be the interpretation of X in a sufficiently saturated elementary extension and R¯:=⟨X¯⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\bar{R}}:= \\langle {\\bar{X}} \\rangle $$\\end{document}. It follows from Massicot and Wagner (J Éc Polytech Math 2:55–63, 2015) that there exists the smallest M-type-definable subgroup of (R¯,+)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\bar{R}},+)$$\\end{document} of bounded index, which is denoted by (R¯,+)M00\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\bar{R}},+)^{00}_M$$\\end{document}. We prove that (R¯,+)M00+R¯·(R¯,+)M00\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\bar{R}},+)^{00}_M + {\\bar{R}} \\cdot ({\\bar{R}},+)^{00}_M$$\\end{document} is the smallest M-type-definable two-sided ideal of R¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\bar{R}}$$\\end{document} of bounded index, which we denote by R¯M00\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\bar{R}}^{00}_M$$\\end{document}. Then S in the first sentence of the abstract is just R¯/R¯M00\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\bar{R}}/{\\bar{R}}^{00}_M$$\\end{document} and f:R→R¯/R¯M00\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f: R \\rightarrow {\\bar{R}}/{\\bar{R}}^{00}_M$$\\end{document} is the quotient map. In fact, f is the universal “definable” (in a suitable sense) locally compact model. The existence of locally compact models can be seen as a general structural result about approximate subrings: every approximate subring X can be recovered up to additive commensurability as the preimage by a locally compact model f:⟨X⟩→S\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f :\\langle X \\rangle \\rightarrow S$$\\end{document} of any relatively compact neighborhood of 0 in S. It should also have various applications to get more precise structural or even classification results. For example, in this paper, we deduce that every [definable] approximate subring X of a ring of positive characteristic is additively commensurable with a [definable] subring contained in 4X+X·4X\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$4X + X \\cdot 4X$$\\end{document}. This easily implies that for any given K,L∈N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K,L \\in \\mathbb {N}$$\\end{document} there exists a constant C(K, L) such that every K-approximate subring X (i.e. K additive translates of X cover X·X∪(X+X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$X \\cdot X \\cup (X+X)$$\\end{document}) of a ring of positive characteristic ≤L\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\le L$$\\end{document} is additively C(K, L)-commensurable with a subring contained in 4X+X·4X\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$4X + X \\cdot 4X$$\\end{document}. Another application of the existence of locally compact models is a classification of finite approximate subrings of rings without zero divisors: for every K∈N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K \\in \\mathbb {N}$$\\end{document} there exists N(K)∈N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$N(K) \\in \\mathbb {N}$$\\end{document} such that for every finite K-approximate subring X of a ring without zero divisors either |X|<N(K)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|X| <N(K)$$\\end{document} or 4X+X·4X\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$4X + X \\cdot 4X$$\\end{document} is a subring which is additively K11\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K^{11}$$\\end{document}-commensurable with X.