Let \(X_1,\ldots ,X_n\) be an i.i.d. sample from symmetric stable distribution with stability parameter \(\alpha\) and scale parameter \(\gamma\). Let \(\varphi _n\) be the empirical characteristic function. We prove a uniform large deviation inequality: given preciseness \(\epsilon >0\) and probability \(p\in (0,1)\), there exists universal (depending on \(\epsilon\) and p but not depending on \(\alpha\) and \(\gamma\)) constant \(\bar{r}>0\) so that $$P\big (\sup _{u>0:r(u)\le \bar{r}}|r(u)-\hat{r}(u)|\ge \epsilon \big )\le p,$$where \(r(u)=(u\gamma )^{\alpha }\) and \(\hat{r}(u)=-\ln |\varphi _n(u)|\). As an applications of the result, we show how it can be used in estimation the unknown stability parameter \(\alpha\).
Read full abstract