P. Erdös and P. Turán [8] ( Acta Math. Acad. Sci. Hungar., 18 (1967) , 309–320) have shown that, if K( n, x) is the number of elements P in S n , the symmetric group on n letters, whose order O( P) satisfies logO(P) ⩽ 1 2 log 2n + ( 1 3 ) x log 3 2 n then lim n→∞ K(n,x) n! = ( 2π ) −1 ∫ x −∞ e −t 2 2 dt. In this paper the analogous result for the symmetric semigroup is obtained. Let α ϵ T n , the symmetric semigroup on n letters (the set of all mappings of {1, 2,…, n} into {1, 2,…, n}) and let O( α) be the order of α. If L( n, x) is the number of α ϵ T n with log O(α)⩽ 1 8 log 2n +(− 1 24 ) x log 3 2 n, then lim n→∞ L(n,x) n n = ( 2π ) −1 ∫ x ∞ e −t 2 2 dt.
Read full abstract