AbstractWe propose a novel method for generating symmetric piecewise developable approximations for shapes in approximately global reflectional or rotational symmetry. Given a shape and its symmetry constraint, the algorithm contains two crucial steps: (i) a symmetric deformation to achieve a nearly developable model and (ii) a symmetric segmentation aided by the deformed shape. The key to the deformation step is the use of the symmetric implicit neural representations of the shape and the deformation field. A new mesh extraction from the implicit function is introduced to construct a strictly symmetric mesh for the subsequent segmentation. The symmetry constraint is carefully integrated into the partition to achieve the symmetric piecewise developable approximation. We demonstrate the effectiveness of our algorithm over various meshes.
Read full abstract