Capitalizing on recent advances in lattice QCD, we present a calculation of the leptonic decay constants f(B(s)) and f(D(s)) that includes effects of one strange sea quark and two light sea quarks via an improved staggered action. By shedding the quenched approximation and the associated lattice scale uncertainty, lattice QCD greatly increases its predictive power. Nonrelativistic QCD is used to simulate heavy quarks with masses between 1.5m(c) and m(b). We arrive at the following results: f(B(s))=260+/-7+/-26+/-8+/-5 and f(D(s))=290+/-20+/-29+/-29+/-6 MeV. The first quoted error is the statistical uncertainty, and the rest estimate the sizes of higher order terms neglected in this calculation. All of these uncertainties are systematically improvable by including another order in the weak coupling expansion, the nonrelativistic expansion, or the Symanzik improvement program.
Read full abstract