This paper presents multivariable switching control of a piezoelectric microgripper regarding its output displacement, gripping force, and manipulated position. Unlike existing microgripper control, it simultaneously regulates force/position variables. Meanwhile, force/position interaction interferences and signal itself overshooting are suppressed. Firstly, a symmetrical microgripper with two independent gripping arms is introduced. Then, a generalized dynamic model is established by considering structural dynamics, electromechanical coupling, and force/position interaction. After that, multivariable switching control is proposed to achieve clamp-carry-release manipulation using dual-input and dual-output (DIDO) perturbation displacement and force/position controllers. Finally, various switching experiments are conducted, demonstrating that force/position interaction interferences are reduced by 83.76 % and 87.51 %, and interference-suppression time is shortened from 0.86 s and 0.70 s to 0.49 s and 0.41 s. Also, overshoots of gripping force and position are eliminated with a smaller settling time. The proposed multivariable switching control exhibits superior regulation performance, guaranteeing manipulation accuracy and stability.
Read full abstract