SummaryThis paper develops a meteorological site selection algorithm to quantify the electricity generation potential of floating solar design configurations on alpine water bodies in Switzerland. Using European power market demand patterns, we estimate the technical and economic potential of 82 prospective high-altitude floating solar sites co-located with existing Swiss hydropower. We demonstrate that the amount of solar energy radiating from high-altitude Swiss water bodies could meet total national electricity demand while significantly reducing carbon emissions and addressing seasonal supply/demand deficits. We construct a global map overlaying sites on each continent where high-altitude floating solar could provide low-carbon, land-sparing electricity. Our results present a compelling motivation to develop alpine floating solar installations. However, significant innovations are still needed to couple floating solar with existing hydropower operations or low-cost energy storage. As the industry matures, high-altitude floating solar technology could become a high-value, low-carbon electricity source.