Atomization of low-temperature fuel is encountered in extreme operating conditions of liquid propulsion systems such as cold start and high-altitude relight for aeroengines. Fuel temperature has a great impact on airblast spray characteristics by influencing fuel viscosity and thus the gas–liquid interaction, which raises the demand to clarify the temperature-dependent transition in near-nozzle breakup behavior and the corresponding droplet size distribution. A liquid-centered swirl coaxial injector is tested on the low-temperature swirl spray and combustion test rig at Zhejiang University, using 25 kHz high-speed digital off-axis holography. RP-3 aviation kerosene is atomized under ignition conditions at temperatures of 233, 253, and 301 K, fuel pressures of 0.03 and 0.69 MPa, and air pressure ranging from 0 to 4.0 kPa. Time-resolved near-nozzle dynamics suggest four types of elementary breakup processes: wavy-sheet breakup, pulsating breakup, membrane-type breakup, and nonaxisymmetric Rayleigh breakup. Each process alternately dominates the near field as fuel Reynolds number (Ref) and aerodynamic Weber number (Weg) decrease, corresponding to four primary breakup modes. A mode classification plot is summarized. Spray structures show an extended breakup length and reduced spray cone angle as fuel temperature (Tf) decreases. Increasing air pressure (Pg) promotes spray expansion at 0.03 MPa, but contracts spray cone at 0.69 MPa. Cross-sectional Sauter mean diameter (SMD) distribution indicates a solid-cone spray at 0.03 MPa and a hollow cone spray at 0.69 MPa. Lowering Tf will rise the SMD in the spray center at 0.03 MPa and transform the toroidal SMD distribution at 0.69 MPa into a solid one. Finally, a temperature-related SMD model is derived considering the exponential viscosity–temperature relationship, and a good fit with R2 > 0.95 is achieved. This research aims to deepen the understanding of the effects of low temperature on the transition of near-nozzle atomization characteristics for airblast sprays. Both spray visualization and SMD results provide reference for numerical simulations and near-nozzle spray modeling.
Read full abstract