Citrus trees affected by huanglongbing (HLB) become diminished, weak, and develop dieback resulting in reduced production. Decline in fruit yield ultimately prevents economically acceptable commercial citrus production. The objectives of this study were to evaluate the effects of severe pruning in combination with an enhanced foliar nutritional treatment on growth, yield, and juice quality of HLB-affected orange trees. The bacterial titer within the trees was monitored before and after treatments, and a cost–benefit analysis provided an economic evaluation of the treatments. Fifteen-year-old ‘Valencia’ orange (Citrus sinensis Macf.) trees on Swingle citrumelo rootstocks [C. paradisi × Poncirus trifoliata (L.) Raf.] with 100% incidence of HLB, confirmed by real-time polymerase chain reaction (PCR), were severely pruned back to the main scaffold branches. Between 2010 and 2015, foliar nutrients were sprayed on both pruned and nonpruned trees to target new flush growth. Three enhanced nutritional foliar treatments were evaluated and compared with a control foliar nutritional treatment that was considered to be a standard practice before endemic HLB. The enhanced nutritional treatments included a mixture of micro- and macronutrients commonly known as the “Boyd cocktail,” a micronutrient package labeled Fortress © (Florida Phosphorus LLC, Key Largo, FL) sprayed with potassium nitrate (KNO3), and the Fortress © micronutrient package sprayed with urea. The experiment was a split-plot with seven replications, with pruning as the main plots, and a foliar nutritional treatment as subplots. Tree pruning was performed in Feb. 2010 before the spring flush. Pruned trees grew longer shoots than the controls the year after pruning. Canopy volume and leaf area were greater with nonpruned trees, but the chlorophyll content per cm2 leaf area was higher in the pruned trees compared with nonpruned trees in 3 years of the 5-year experiment. Pruned and nonpruned trees bloomed and set fruit the first year of the experiment in the spring of 2010–11. The fruit crop for the 2010–11 and 2014–15 seasons, and the overall total fruit crop for the 2010–15 season on pruned trees were significantly lower than those on nonpruned trees. However, no significant yield differences were found between pruned and nonpruned trees in the 2011–12, 2012–13, and 2013–14 growing seasons. Fruit yields from pruned trees never surpassed the yields from nonpruned trees, and this was possibly due to the severe-pruning treatment. Thus, severe pruning, as used in this trial, was not cost effective through the first 5 years after pruning. The rapid regrowth response of the pruned trees, however, may indicate that a reduced pruning approach could be effective at rejuvenating the HLB-affected trees, and an alternative to tree removal and replanting. Enhanced foliar nutrition treatments provided some yield benefits, especially in the early years of the trial. However, the enhanced foliar nutrition treatments did not prove to be cost effective.