AbstractStarch is widely utilized in the food industry, but its native form may have limitations in terms of functionality and nutrition. This study examines the characteristics of native oat starch and explores its potential for chemical modification by cross‐linking, with the aim of gaining a deeper understanding of its functionality. Citrate‐modified oat starch (COS) is generated by cross‐linking native oat starch (NOS) with citric acid. Chemical analysis reveals distinctions between NOS and COS, notably in terms of resistant starch content, which is elevated in COS. X‐ray diffraction (XRD) results reveal that NOS exhibits crystalline peaks characteristic of A‐type starch, distinguishing it from COS. In contrast, COS displays absent crystalline peaks, attributed to cross‐linking. Swelling factor, solubility, and paste clarity along with most of the pasting properties are found to be significantly lower for COS compared to NOS. The scanning electron microscopic images show how cross‐linking can alter the morphology of the NOS. The findings from this investigation highlight significant distinctions between NOS and COS. The cross‐linking process successfully enhances the resistant starch content and imparted distinctive properties absent in native oat starch. Consequently, there is potential for incorporating modified oat starch as a food ingredient.
Read full abstract