Lidar using active light illumination is capable of capturing depth and reflectivity information of target scenes. Among various technologies, streak tube imaging lidar (STIL) has garnered significant attention due to its high resolution and excellent precision. The echo signals of a STIL system using single laser pulse are often overwhelmed by noise in complex environments, making it difficult to discern the range of the target. By combining high-frequency laser pulses with the repetitive sweep circuit, the STIL system enables efficient detection of few-photons signal in weak-light environments. Additionally, we have developed a robust algorithm for estimating the depth and reflectivity images of targets. The results demonstrate that this lidar system achieves a depth resolution better than 0.5 mm and a ranging accuracy of 95 um. Furthermore, the imaging of natural scenes also validates the exceptional 3D imaging capability of this system.