Since epigenetic regulation seemed likely to be involved in SV40 early transcription following infection, we have analyzed the organization of nucleosomes carrying histone modifications (acetyl-H3, acetyl-H4, H3K9me1, H3K9me3, H3K4me1, H3K4me3, H3K27me3, H4K20me1) at 30 min and 2 h post infection in SV40 minichromosomes prepared in the absence or presence of the transcription inhibitor dichloro-1-beta-d-ribofuranosyl benzimidazole. The former condition was used to determine how SV40 chromatin structure changed during early transcription, and the latter was used to determine the role of active transcription. The location of RNAPII was used as a marker to identify where histone modifications were most likely to be involved in regulation. Acetyl-H3 acted like epigenetic memory by being present at sites subsequently bound by RNAPII, while H3K9me1 and H3K27me3 were reorganized to the late side of the SV40 regulatory region apparently to repress late transcription. The organization of acetyl-H3 and H3K9me1 but not H3K27me3 required active transcription.
Read full abstract