Trivalent chromium (Cr3+) causes serious environmental pollution, degradation of the quality of edible agricultural products and human diseases. A novel phenanthro[9,10-d]imidazole-derived conjugated polymers (PIPF) was obtained from 4-(5,10-dibromo-1H-phenanthro[9,10-d]imidazol-2-yl)phenol and diethyl 4,4′-(2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene-9,9-diyl)dibutyrate by Suzuki polymerization reaction, which was reasonably demonstrated by 1H NMR spectroscopy, infrared spectroscopy and quantum chemical calculations. The PIPF exhibits a “turn-on” fluorescence response to Cr3+ in DMSO/H2O (98:2, v/v) with naked-eye detection. The limit of detection for Cr3+ was calculated to be 0.073 μM with a linear range of 3–9 μM. The possible mechanism of the PIPF-based Cr3+ fluorescence “turn-on” sensor is due to the inhibition of the PET process by the coordination of Cr3+ to the hexaalkyl ester carbon chain of PIPF (RCOO-). The high sensitivity, good selectivity, and utility of this sensor indicated that PIPF-based “turn-on” fluorescence sensor is a potential fluorescence application for measuring Cr3+ in environmental samples.