Spectroscopic methods offer valuable insights into the molecular and structural changes induced by stress, but existing techniques are often unable to perform real-time measurements during deformation. A novel solid open mount design is presented that enables spectroscopic investigations of materials under sustained tensile stress while maintaining crucial alignment of the optical system. The mount design allows for sample movement in response to applied strain while maintaining the position of the sample plane, ensuring consistent and reliable spectroscopic measurements. The effectiveness of the mount design is demonstrated with vibrational sum-frequency generation measurements of an elastomer, cured hydroxyl-terminated polybutadiene, and a plastic, high-density polyethylene, taken before, during, and after tensile deformation. The application of this mount to other spectroscopic techniques is discussed. The ability to collect spectroscopic data during a stress event would provide valuable insights into the behavior of stressed materials.
Read full abstract