AbstractThe role of free passage distance (FPD: the distance between the avalanche region and surface detectors) in influencing the relative numbers of energetic electrons and gamma rays in Thunderstorm Ground Enhancements (TGEs) is reconsidered and focuses on the contrast between long (>100 m) versus short (<100 m) FPDs, respectively. Estimates of FPD are based on information from published balloon soundings of the electric field, from published profiles of radar reflectivity in TGEs, and from analyses of Japan winter storms. All these data sources support typical values of FPD >100 m. Neither the shortcomings of present particle detectors in distinguishing electrons from gamma rays, nor the dominance of gamma rays over electrons, are sufficient evidence to deny the robust presence of Compton electrons at FDP values greater than 100 m that have also been shown in earlier simulations as well as the present Comment. Problems with having sustained electric fields of breakeven magnitude within 100 m of the Earth's surface (in relatively rare TGEs) are identified. The resolution of these problems, and the prominent nocturnal presence of these rare events, may possibly be explained by the descent of a strong field region in a collapsing storm, and by a low cloud base that intercepts and immobilizes fast corona ions, thereby preserving the intense electric field.
Read full abstract