As the global shift toward sustainable transportation gains momentum, the integration of electric vehicles (EVs) becomes imperative, necessitating a robust and environmentally friendly charging infrastructure. Leveraging the abundant solar potential in the region, this study examines the technical, economic, and environmental feasibility of deploying photovoltaic electric vehicle charging stations (PV-EVCSs) in Hail City, Saudi Arabia, as a case study. This study examines factors such as the energy demand, grid integration, and user accessibility, aiming to address the challenges and opportunities presented by the urban fabric. The proposed solar charging station network seeks to catalyze a paradigm shift toward a cleaner and more sustainable transportation ecosystem, embodying a forward-thinking approach to meeting the evolving needs of urban mobility in the 21st century. The analysis encompasses many scenarios, encompassing a range of car battery sizes, charger powers, and car slots per station. Zone 4 is identified as the most crucial area, where seven charging stations are needed to fulfill the expected demand in the absence of any private charging alternatives. The economic evaluation of the 1047.35 kWp PV system reveals an estimated conventional payback time of 11.69 years, accompanied by a return on assets of 10.17%. The system generates accumulated cash flows amounting to SR 7,169,294.62 over 30 years, while the estimated operational and maintenance expenses are predicted to be SR 50,000 per year. The overall investment cost for the solar PV and EV charging stations is SR 4,487,982. This cost is offset by the yearly electricity savings from solar and grid sources, which can reach up to SR 396,465.26 by year 30. This work presents a detailed plan for the future of sustainable transport. It combines technical, environmental, and economic aspects to promote a cleaner and more sustainable urban mobility system.
Read full abstract