Camellia oleifera C. Abel is a woody oil crop with multiple purposes. This study aims to investigate the mutagenic effects of 60Co-γ radiation on C. oleifera seedlings and to screen anthracnose-resistant mutants. Two C. oleifera varieties were investigated: ‘Xianglin 1’ (XL1) and ‘Xianglin 210’ (XL210). Seeds were irradiated with 0 Gy, 30 Gy, 50 Gy, and 80 Gy of 60Co-γ, and after one year of planting, the mutagenic lines were studied, and disease-resistant mutants were screened. Results showed that as the radiation intensity was increased, the emergence percentage of both C. oleifera XL210 and XL1 was significantly decreased. Radiation significantly changed the SOD and POD activities in both varieties. Furthermore, 80 Gy irradiated lines showed reduced anthracnose resistance in both varieties. However, 50 Gy irradiated lines showed enhanced disease resistance in XL210 while reducing it in XL1. The 30 Gy irradiated lines did not affect the disease resistance of either variety. Colletotrichum gloeosporioides infection tests were conducted on 94 mutant C. oleifera seedlings, resulting in 8 highly resistant mutants (A3, A8, A10, A19, A21, A32, A35, B17) and 3 susceptible mutants (A4, B15, B27) in XL210 and XL1. Differences in SOD and POD activities led to variations in disease resistance among different mutants. Additionally, the expression levels of CoSOD1, CoPOD, CoIDD4, and CoWKRY78 were varied among the different mutants. This study delivers the screening of disease-resistant mutants in C. oleifera through mutagenic breeding, providing material for the development of new C. oleifera varieties and serving as a resource for further research in mutagenic breeding.