Heat shock protein 90 (HSP90) is recognized for its protective effects against heat stress damage; however, the specific functions and underlying molecular mechanisms of HSP90 in heat-stressed cardiomyocytes remain largely unexplored, particularly in tropical species. In our study, Wenchang chickens (WCCs) were classified into two groups: the heat stress survival (HSS) group and the heat stress death (HSD) group, based on their survival following exposure to heat stress. Heat stress resulted in significant cardiomyocyte damage, mitochondrial dysfunction, and apoptosis in the HSD group, while the damage was less pronounced in the HSS group. We further validated these findings in primary cardiomyocytes derived from Wenchang chickens (PCWs). Additionally, heat stress was found to upregulate Pink1/Parkin-mediated mitophagy, which was accompanied by an increase in HSP90 expression in both cardiomyocytes and PCWs. Our results demonstrated that HSP90 overexpression enhances PINK1/Parkin-mediated mitophagy, ultimately inhibiting apoptosis and oxidative stress in heat-stressed PCWs. However, the application of Geldanamycin (GA) reversed these effects. Notably, we discovered that HSP90 interacts with Beclin-1 through mitochondrial translocation and directly regulates mitophagy levels in PCWs. In summary, we have elucidated a novel role for HSP90 and mitophagy in regulating heat stress-induced acute cardiomyocyte injury.
Read full abstract