The objective of this study was to assess the pulsatility preservation capability of the universal ventricular assist device (UVAD) when used as a biventricular assist device (BVAD). This evaluation was conducted through an in vitro experiment, utilizing a pulsatile biventricular circulatory mock loop. Two UVAD pumps were tested in a dual setup (BVAD) in the circulatory model with the simulated conditions of left heart failure (HF), right HF, and moderate/severe biventricular HF (BHF). The total flow, aortic pulse pressure, the pulse augmentation factor (PAF), the energy-equivalent pressure (EEP), and the surplus hemodynamic energy (SHE) were observed at various pump speeds to evaluate the pulsatility. The aortic pulse pressure increased from the baseline (without pump) in all simulated hemodynamic conditions. The PAF ranged from 17%-35% in healthy, left HF, right HF, and mild BHF conditions, with the highest PAF of 90% being observed in the severe BHF condition. The EEP correlated with LVAD flow in all groups (R2 = 0.87-0.97) and increased from the baseline in all cases. The SHE peaked at approximately 5-6 L/min of LVAD support and was likely to decrease at higher LVAD pump flow. The largest decrease in SHE from the baseline, 53%, was observed in the mild BHF conditions with the highest LVAD and RVAD support. The UVAD successfully demonstrated the ability to preserve pulsatility in vitro, and to optimize the cardiac output, as an isolated circulatory support device option (RVAD or LVAD) and when used for BVAD support.
Read full abstract