To observe the expression of deleted in malignant brain tumor protein 1 (DMBT1) in rat acute respiratory distress syndrome (ARDS) model induced by sepsis and its relationship with ARDS related biomarkers. Forty-eight healthy male rats were randomly divided into sham operation group (Sham group) and ARDS model group, and the rats in each group were further divided into three subgroups at 6, 12 and 24 hours after operation, with 8 rats in each subgroup. The rats in the Sham group were exposed to the cecum only, and sepsis induced ARDS model was reproduced by cecal ligation and puncture (CLP) in the ARDS model group. The general performance was observed at 6, 12, 24 hours after operation. Abdominal aortic blood of rats was collected, and the levels of DMBT1, surfactant-associated protein D (SP-D), vascular endothelial growth factor (VEGF), interleukins (IL-6, IL-10) in serum were determined by enzyme-linked immunosorbent assay (ELISA). The lung tissues were collected, and the lung wet/dry weight (W/D) ratio was determined. The lung tissue pathological changes were observed under light microscope after hematoxylin-eosin (HE) staining, and the lung tissue injury score was evaluated. The expression of DMBT1 protein in lung tissue was determined by Western blotting. The relationship between the serum DMBT1 and SP-D, VEGF, IL-6, IL-10, lung tissue injury score were analyzed by Pearson correlation analysis. Rats in the ARDS model group showed obvious pathological manifestations after operation. The alveolar structure destruction, inflammatory cell infiltration, and alveolar hemorrhage were observed under microscope. Compared with the Sham group, the lung tissue injury score and the lung W/D ratio at 12 hours after operation in the ARDS model group were significantly increased (lung tissue injury score: 3.35±0.13 vs. 1.16±0.07, lung W/D ratio: 5.36±0.44 vs. 4.38±0.35, both P < 0.05), and pulmonary edema was present, which suggested that the ARDS model caused by CLP was successfully reproduced. The results of ELISA and Western blotting showed that the levels of serum DMBT1, SP-D, VEGF and IL-6 in the ARDS model group increased gradually with time, while the level of IL-10 increased first and then decreased. Compared with the Sham group, the levels of DMBT1 in serum and the expressions of DMBT1 protein in lung tissue in the ARDS model group were significantly increased from 6 hours after operation [serum (ng/L) : 231.96±19.17 vs. 187.44±10.19, lung tissue (DMBT1/β-actin): 2.05±0.19 vs. 0.93±0.25, both P < 0.05], and the levels of SP-D, VEGF, IL-6 and IL-10 in serum were significantly increased from 12 hours after operation [SP-D (ng/L): 73.35±8.05 vs. 43.28±5.77, VEGF (ng/L): 89.85±8.47 vs. 43.19±5.11, IL-6 (ng/L): 36.01±2.48 vs. 17.49±1.77, IL-10 (ng/L): 84.55±8.41 vs. 39.83±5.02, all P < 0.05]. Pearson correlation analysis showed that serum DMBT1 was positively correlated with serum SP-D, VEGF, IL-6, IL-10 and lung injury score at 12 hours and 24 hours in the ARDS model group (12 hours: r values were 0.946, 0.942, 0.931, 0.936, 0.748, respectively; 24 hours: r values were 0.892, 0.945, 0.951, 0.918, 0.973, respectively; all P < 0.05). DMBT1 is a novel early biomarker of ARDS by affecting alveolar epithelial cell, alveolar capillary permeability and inflammatory response.
Read full abstract