The detection and sensing of chirality using chiral biomaterials are growing areas of research in advanced bioelectronics. As a result, chiral-controlled biomaterials are crucial for advancing current technologies in chiral sensing applications within biosystems. A chiral carbon dot (C-dot) modulated self-assembled emissive cellulose nanocrystal (CNC) film is developed where the chirality of the CNC film can be tempered between left-handed and right-handed chirality after being doped with chiral L/D-C-dots in CNCs (C-dot-CNC film), transferring the chirality from C-dots to CNCs. The interaction between C-dots, CNCs, and carrier dynamics is investigated using a variety of steady-state and time-resolved PL spectroscopy techniques. The chiral C-dot enhanced the protonic conductivity across the CNC via the formation of hydrogen bonds with its surface functional groups and water molecules. Further, the chiral CNC-C-dots photoelectrodes demonstrate an excellent ability to distinguish between left-handed and right-handed small molecules. These findings on the underlying mechanism of spin selectivity between chiral CNC-C-dot and chiral ligand hold promise for the development of efficient chiral-sensing electronic devices.