The present investigation of the dynamic two-binary droplet interactions has gained attention since its use to expand and improve several numerical methods. Generally, its interactions are classified into coalescence, bouncing, reflective, and stretching separation. This study simulated droplet coalescence using the meshless radial basis function (RBF) method. These methods are used to solve the Navier-Stokes equations combined with the Cahn-Hilliard equations to track the interface between two fluids. This work uses the fractional step method to calculate the pressure-velocity coupling in the Navier-Stokes equations. The numerical results were compared with the available data in the literature to validate the proposed method. Based on the validation, the proposed method conforms well with the literature. To identify further coalescence characteristics, the model considered different values in viscosity (2, 4, and 8 cP), collision velocity (1.5 m/s and 3 m/s), and surface tension (0.014, 0.028, and 0.056 N/m) parameters. The increasing viscosity was linearly proportional to the collision time, whereas increased surface tension and collision velocity shortened the collision time.
Read full abstract