Freestanding nanoassemblies represent a new class of functional materials with highly responsive optical, electrical, and mechanical properties. Hence, they are well-suited for applications in advanced sensor devices. Here, it is shown that transfer printing enables the well-controlled fabrication of freestanding membranes from layered nanoassemblies: Using a polydimethylsiloxane (PDMS) stamp, thin films (thickness: ∼45 to ∼51 nm) of 1,6-hexanedithiol cross-linked gold nanoparticles (diameter: ∼3.9 ± 0.8 nm) were transferred onto surface-oxidized silicon substrates featuring square microcavities with edge lengths of ∼78 μm. After adjusting the contact pressure to 1.8 bar, intact membranes were printed in yields of ∼70%. The prestress of printed membranes was determined by measuring their resonance frequencies under electrostatic actuation. In general, the prestress values were in the ∼10 MPa range with standard deviations below 10% for parallel printed resonators. The deviations in average prestress between resonators printed onto different substrates were 21% or less. By increasing the temperature during the final transfer step from 5 to 48 °C, it was possible to tune the average prestress from ∼14 to ∼28 MPa. This effect was attributed to the pronounced thermal expansion of the PDMS stamp. Finally, by transfer printing layered films of graphene oxide/silk fibroin (GO/SF), it is shown that the approach can be adapted for the fabrication of freestanding membranes from very different nanomaterials.
Read full abstract