The catalytic role of oxide-derived Cu (OD-Cu) in promoting CO2 reduction (CO2R) to C2+ products has been appreciated for decades. However, the dynamic evolution of the surface oxidation states, together with their real correlation to the binding of reaction intermediates, remains unclear due to technical challenges. Here, we show the time-resolved spectroscopic signatures of key OD-Cu-CO2•- intermediates during catalytic CO2 reduction through one electron transfer from nanoseconds to seconds time scale. We generated the initial intermediate CO2•- radicals in the bulk solution and monitored the interfacial reaction kinetics with well-defined OD-Cu (Cu(0), Cu(I), and Cu(II)) nanoparticles. Combined with molecular simulations, transient absorption profiles analysis reveals that Cu(I) induced a faster CO2•- radical coupling reaction than Cu(0), whereas Cu(II) is only reduced to Cu(I) by the CO2•- radical. Furthermore, the newly developed multistep cumulative pulse methodology uncovered the transition in chemical states of mixed OD-Cu during radical coupling reactions. This pulse radiolysis study provides compelling evidence for the beneficial role of subsurface oxides in early time catalytic CO2 transformation.
Read full abstract