The recently developed method of nanoindentation is applied to various forms of carbon materials with different mechanical properties, namely diamond, graphite and fullerite films. A diamond indenter was used and its actual shape determined by scanning force microscopy with a calibration grid. Nanoindentation performed on different surfaces of synthetic diamond turned out to be completely elastic with no plastic contributions. From the slope of the force–depth curve the Young's modulus as well as the hardness were obtained reflecting a very large hardness of 95 GPa and 117 GPa for the {100} and {111} crystal surfaces, respectively. Investigation of a layered material such as highly oriented pyrolytic graphite again showed elastic deformation for small indentation depths but as the load increased, the induced stress became sufficient to break the layers after which again an elastic deformation occurred. The Young’s modulus was calculated to be 10.5 GPa for indentation in a direction perpendicular to the layers. Plastic deformation of a thin fullerite film during the indentation process takes place in the softer material of a molecular crystalline solid formed by C60 molecules. The hardness values of 0.24 GPa and 0.21 GPa for these films grown by layer epitaxy and island growth on mica and glass, respectively, vary with the morphology of the C60 films. In addition to the experimental work, molecular dynamics simulations of the indentation process have been performed to see how the tip–crystal interaction turns into an elastic deformation of atomic layers, the creation of defects and nanocracks. The simulations are performed for both graphite and diamond but, because of computing power limitations, for indentation depths an order of magnitude smaller than the experiment and over indentation times several orders of magnitude smaller. The simulations capture the main experimental features of the nanoindentation process showing the elastic deformation that takes place in both materials. However, if the speed of indentation is increased, the simulations indicate that permanent displacements of atoms are possible and permanent deformation of the material takes place.
Read full abstract