Drug delivery efficiency often affects chemotherapy outcome due to dense collagen barrier in tumor environment. Here, we report a nanoparticle capable of pH and glutathione dual-responsive drug delivery to enhance the efficacy of breast cancer chemotherapy. Maleiminated polyethylene glycol and polylactide block copolymer were synthesized as a core material, doxorubicin was encapsulated into the nanoparticle by self-assembly. Thiocollagenase and maleimide were connected on the nanoparticle surface by click chemistry, and further coated with chondroitin sulfate as a protective layer to form dual-responsive doxorubicin nanoparticle. The results showed that the nanoparticle had the ability to penetrate deep tumor tissue, to target on CD44 of cancer cell, and to release doxorubicin in cancer cell in response to pH and glutathione signals, demonstrating superior anticancer efficacy in breast cancer-bearing mice. In conclusion, the dual-responsive nanoparticle could be used as a drug carrier to enhance drug delivery in breast cancer chemotherapy.
Read full abstract