Ultraviolet shortwave (UV-C) is a technology for postharvest fruit disinfection. This study aimed to use computational fluid dynamics (CFD) based on the discrete ordinate (DO) radiation model to analyze the distribution of UV-C intensity on whole and minimally processed mangoes within a disinfection chamber and to predict treatments against foodborne pathogens. The mango spears were oriented both parallel and perpendicular to the lamp and positioned at varying distances from the radiation source (50, 75, and 100 mm for spears and 100 mm for whole fruit). CFD simulations integrated with in vitro kinetic parameters enabled predictions of the time and doses needed to inactivate one to three logarithmic units of pathogens on the fruit surface. The highest average radiation intensity values were recorded for the whole mango oriented parallel to the lamp at 100 mm and the spears oriented normally to the lamp at 50 mm. The estimated times to achieve inactivation of one to three logarithmic units of microorganisms ranged from approximately 15 to 6540 s, while the doses necessary for this inactivation were, on average, 1.854, 5.291, and 10.656 kJ/m2, respectively. CFD simulations are valuable for optimizing UV-C treatments in large-scale designing from both microbicide and sustainable perspectives.
Read full abstract