We investigate the relationships between various magnetic and spintronic properties within AuPt/ferromagnet (FM) bilayers (FM = CoFe, CoFeB, Py, and Co). A linear correlation between the volume and surface magnetic anisotropies is identified, potentially influenced by the magnetoelastic effect. The FM thickness dependence of the magnetic damping indicates that spin-memory loss due to the interfacial spin–orbit coupling (ISOC) and spin pumping to the heavy-metal layer contribute little to the damping. Instead, a notable contribution from two magnon scattering to the damping is recognized in AuPt/(Co, CoFe, CoFeB) bilayers, possibly originating from a magnetic inhomogeneity due to the ISOC. In addition, in contrast to the magnetic damping, spin–orbit-torque efficiencies are unlikely related to the ISOC in AuPt/FM systems. This work offers valuable insights into the correlations among magnetic and spintronic parameters arising from the interfaces, ultimately aiding in the advancement of magnetic memory and information processing systems.