Astroviruses (AstVs) are notable for their propensity for cross-species transmission; however, the molecular determinants underlying this phenomenon remain poorly understood. The spike protein, which is responsible for host cell entry and is a major antigenic determinant, is hypothesized to play a pivotal role. In this study, we observed high sequence variability in the spike region of AstV. Structural analyses have revealed variability, arising from diverse evolutionary relationships, among AstVs of the same host origin. AstV spike proteins can be categorized into six groups, each of which encompasses AstVs from diverse hosts that exhibit high degrees of structural similarity. These six groups correspond to branches observed in the phylogenetic tree. Notably, the spike surface-exposed loops emerged as focal hotspots for B-cell epitopes across groups, with sequence variability that may contribute to immune evasion upon host switching. Differences in the spike structures of AstVs infecting the same host raise the possibility of distinct tissue tropisms and corresponding clinical manifestations. Collectively, our findings provide insights into the roles of spike protein similarities and immune epitope diversity in driving AstV cross-species transmission. Understanding these molecular mechanisms is crucial to predicting and mitigating the emergence of novel AstV strains.
Read full abstract