Ammonium perchlorate (NH4ClO4, abbreviated as AP) has the advantages of high oxygen content, high density, and good compatibility, and has significant application prospects in the field of energetic materials. The crystal morphology has a great influence on the properties and sensibility of energetic materials, and a single experimental means is difficult in exploring the crystals; therefore, the crystal morphology of AP is investigated using molecular dynamics simulation complemented with experiments, to theoretically analyze the differences in AP crystal habit and the interactions between solvent molecules and the main growing crystal surfaces of AP. The results show that AP crystal is mainly composed of five independent crystal surfaces (0 0 1), (0 1 0), (1 0 0), (1 0 1), and (1 0 -1) in vacuum using the BFDH laws, with (0 0 1) surface being the main growth crystal surface. In contrast, in H2O solvent, the (1 0 1) and (1 0 -1) surfaces disappear, and the AP mainly consists of (0 0 1), (0 1 0), and (1 0 0) surfaces with a rectangular shape. The crystal morphology obtained from theoretical prediction is in good agreement with that obtained from experimental culture. This paper can provide a new idea for the cultivation and preparation of AP large crystals, and promote the application of AP crystals in energetic materials. The crystal morphologies of AP in vacuum and H2O solvent under Dreiding force field were predicted based on attachment energy model by using molecular dynamics method in Materials Studio 2019 software. The entire molecular dynamics simulation was carried out under the NTV system, the temperature control method was selected as Anderson, and the system temperature was set to 298 K. The simulation time was set to 40 ps, the step size was set to 1 fs, and the data were outputted every 5000 steps.
Read full abstract