Critical burn management decisions rely on accurate percent total body surface area (%TBSA) burn estimation. Existing %TBSA burn estimation models (eg, Lund-Browder chart and rule of nines) were derived from a linear formula and a limited number of individuals a century ago and do not reflect the range of body habitus of the modern population. To develop a practical %TBSA burn estimation tool that accounts for exact burn injury pattern, sex, and body habitus. This population-based cohort study evaluated the efficacy of a computer vision algorithm application in processing an adult laser body scan data set. High-resolution surface anthropometry laser body scans of 3047 North American and European adults aged 18 to 65 years from the Civilian American and European Surface Anthropometry Resource data set (1998-2001) were included. Of these, 1517 participants (49.8%) were male. Race and ethnicity data were not available for analysis. Analyses were conducted in 2020. The contributory %TBSA for 18 body regions in each individual. Mobile application for real-time %TBSA burn computation based on sex, habitus, and exact burn injury pattern. Of the 3047 individuals aged 18 to 65 years for whom body scans were available, 1517 (49.8%) were male. Wide individual variability was found in the extent to which major body regions contributed to %TBSA, especially in the torso and legs. Anterior torso %TBSA increased with increasing body habitus (mean [SD], 15.1 [0.9] to 19.1 [2.0] for male individuals; 15.1 [0.8] to 18.0 [1.7] for female individuals). This increase was attributable to increase in abdomen %TBSA (mean [SD], 5.3 [0.7] to 8.7 [1.8]) among male individuals and increase in abdomen (mean [SD], 4.6 [0.6] to 6.8 [1.7]) and pelvis (mean [SD], 1.5 [0.2] to 2.9 [0.9]) %TBSAs among female individuals. For most body regions, Lund-Browder chart and rule of nines estimates fell outside the population's measured interquartile ranges. The mobile application tested in this study, Burn Area, facilitated accurate %TBSA burn computation based on exact burn injury pattern for 10 sex and body habitus-specific models. Computer vision algorithm application to a large laser body scan data set may provide a practical tool that facilitates accurate %TBSA burn computation in the modern era.
Read full abstract