Lateral-entry wiring (LEW) for displaced supracondylar humeral fractures (SHFs) has been popularised internationally. BOAST guidance suggests either LEW or crossed wires; the latter has reported lower risk of loss of fracture reduction –we explore technical reasons why.We reviewed 8 years of displaced SHFs in two regional centres. Injuries were grouped using the Gartland Classification, with posterolateral or posteromedial displacement assessment for Gartland 3 injuries. We identified any loss of fracture reduction, and reviewed intra-operative imaging to identify learning points that may contribute to early rotational displacement (ERD).345 SHFs were included, between 2012 and 2020. Gartland 2 (n=117) injuries had a 3.42% risk. ERD. Gartland 3 crossed wirings (n=114) had a 6.14% risk of ERD, with those moving all being posterolaterally displaced. Gartland 3, posterolaterally displaced LEW (n=56) had a 35.7% risk of ERD. Gartland 3, posteromedially displaced LEW (n=58) had a 22.4% risk of ERD. All injuries with ERD except 3 had identifiable learning points, the commonest being non-divergence of wires, or wires not passing through both fracture fragments.LEW requires divergent spread and bicolumnar fixation. Achieving a solid construct through this method appears more challenging than crossed wiring, with rates of ERD 3–5× higher. Low-volume surgeons should adhere to BOAST guidelines and choose a wiring construct that works best in their hands. They can also be reassured that should a loss of position occur, the risk of requirement for revision surgery is extremely low in our study (0.3%), and it is unlikely to affect long term outcomes.