Alongshan virus (ALSV) is a newly discovered pathogen in the Flaviviridae family, characterized by a unique multi-segmented genome that is distantly related to the canonical flaviviruses. Understanding the pathogenic mechanism of this emerging segmented flavivirus is crucial for the development of effective intervention strategies. In this study, we demonstrate that ALSV can infect various mammalian cells and induce the expression of antiviral genes. Furthermore, ALSV is sensitive to IFN-β, but it has developed strategies to counteract the host's type I IFN response. Mechanistically, ALSV's nonstructural protein NSP1 interacts with and degrades human STAT2 through an autophagy pathway, with species-dependent effects. This degradation directly inhibits the expression of interferon-stimulated genes (ISGs). Additionally, NSP1-mediated degradation of STAT2 disrupts mitochondrial dynamics, leading to mitophagy and inhibition of mitochondrial biogenesis. This, in turn, suppresses the host's innate immune response. Interestingly, we found that inhibiting mitophagy using 3-methyladenine and enhancing mitochondrial biogenesis with the PPARγ agonist pioglitazone can reverse NSP1-mediated inhibition of ISGs, suggesting that promoting mitochondrial mass could serve as an effective antiviral strategy. Specifically, the NSP1 methyltransferase domain binds to the key sites of F175/R176 located in the coiled-coil domain of STAT2. Our findings provide valuable insights into the intricate regulatory cross talk between ALSV and the host's innate immune response, shedding light on the pathogenesis of this emerging segmented flavivirus and offering potential intervention strategies.IMPORTANCEAlongshan virus (ALSV), a segmented flavivirus belonging to the Flaviviridae family, was first identified in individuals who had been bitten by ticks in Northeastern China. ALSV infection is responsible for causing Alongshan fever, a condition characterized by various clinical symptoms, including fever, headache, skin rash, myalgia, arthralgia, depression, and coma. There is an urgent need for effective antiviral therapies. Here, we demonstrate that ALSV is susceptible to IFN-β but has developed mechanisms to counteract the host's innate immune response. Specifically, the ALSV nonstructural protein NSP1 interacts with STAT2, leading to its degradation via an autophagy pathway that exhibits species-dependent effects. Additionally, NSP1 disrupts mitochondrial dynamics and suppresses mitochondrial biogenesis, resulting in a reduction in mitochondrial mass, which ultimately contributes to the inhibition of the host's innate immune response. Interestingly, we found that inhibiting mitophagy and promoting mitochondrial biogenesis can reverse NSP1-mediated suppression of innate immune response by increasing mitochondrial mass. These findings provide valuable insights into the molecular mechanisms of ALSV pathogenesis and suggest potential therapeutic targets against ALSV infection.
Read full abstract