A three-dimensional (3D) ZnO-supported carbon fiber aerogel (ZnO/CFA) was successfully prepared by using natural cotton with hydrophilicity as the precursor. The facile synthetic strategy includes two steps: Zn2+ exchange on the surface of cotton and thermal treatment at high temperatures. Particularly, the calcination temperature was found to greatly affect the content, dispersity, and size of supported ZnO nanoparticles, and the product obtained at 600 °C (ZnO/CFA-600) exhibited both high ZnO loading and well-dispersed ZnO nanoparticles. Therefore, ZnO/CFA-600 has superior photocatalytic activity for tetracycline (TC) degradation under UV light irradiation compared with others. Additionally, the unique 3D crosslinking network inside the ZnO/CFA generates an open channel for the rapid migration and diffusion of reactants and products. In a dynamical water-treated system, the 3D porous ZnO/CFA-600 continuously works for TC removal without any separation operation and maintains high synergistic performance of adsorption and photocatalysis for at least 8 h. Consequently, the 3D porous ZnO/CFA product, with its large adsorbability and high photoactivity, shows a lot of industrial potential in wastewater treatments.
Read full abstract