The rising throughput of log-yards imposes new constraints on existing equipment and increases the complexity of delivering an optimal and uninterrupted supply of pulpwood to pulp mills. To find ways of addressing these problems by reducing log cycle times, this work uses a discrete-event mathematics model to simulate operations at a log-yard and study the impact of three different log-yard inventory strategies and two alternative machine systems for log transportation between main log-yard and buffer storage. The yard’s existing inventory strategy of last load in and first out limits access to older logs at the main storage site. By allocating space for 89,000 m3 and 99,000 m3 of pulpwood at the buffer storage it is possible to keep the log cycle time at the main storage to a maximum of 12 and 6 months. Additionally, the use of an alternative log transportation machine system comprising a material handler with a trailer increased the work time capacity utilization relative to the yard’s current machine system of two shuttle trucks and a material handler for transporting logs between the main and buffer storage areas. Compared to the currently-used last in first out inventory strategy and purposely emptying the main storage area once or twice per year did reduce the total work time of both machine systems by 14% and 30%. Consequently, the volume delivered from the buffer to the log-yard decreased on average by 17% and 37% when emptying the main storage area once and twice per year. Even with reduced work time when emptying the main storage area, both machine systems could fulfil given work load for transporting logs from the buffer storage to the main log-yard without interrupting operations of the log-yard.