We construct new three-family N=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathcal {N}}}=1$$\\end{document} supersymmetric Pati–Salam models from intersecting D6-branes with original gauge group U(4)C×USp(2)L×U(2)R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{U}(4)_C \ imes \ extrm{USp}(2)_L \ imes \ extrm{U}(2)_R$$\\end{document} on a Type IIA T6/(Z2×Z2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {T}}^6/({\\mathbb {Z}}_2\ imes {\\mathbb {Z}}_2)$$\\end{document} orientifold. We find that replacing a U(2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{U}(2)$$\\end{document} with a USp(2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{USp}(2)$$\\end{document} group severely restricts the number of three-generation supersymmetric models such that there are only five inequivalent models. Exchanging the left and right sectors, we obtain five dual models with gauge group U(4)C×U(2)L×USp(2)R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{U}(4)_C \ imes \ extrm{U}(2)_L \ imes \ extrm{USp}(2)_R$$\\end{document}. These ten models have different gauge coupling relations at string scale. The highest wrapping number is 4, and one of the models contains no filler O6-planes. Moreover, we discuss in detail the particle spectra, the composite particles through strong coupling dynamics, and the exotic particle decouplings. Also, we study how to realize the string-scale gauge coupling relations in some models.
Read full abstract