Как известно, в работе А.В. Бицадзе показано, что задача Дирихле для уравнения смешанного типа некорректна. Естественно возникает вопрос: нельзя ли заменить условия задачи Дирихле другими условиями, охватывающими всю границу, которые обеспечивают корректность задачи? Впервые такие краевые задачи (нелокальные краевые задачи) для уравнения смешанного типа были предложены и изучены в работах Ф.И. Франкля при решении газодинамической задачи об обтекании профилей потоком дозвуковой скорости со сверхзвуковой зоной, оканчивающейся прямым скачком уплотнения. Близкие по постановке задачи для уравнения смешанного типа второго рода второго порядка, имеются в работах А.Н. Терехова, С.Н. Глазатова, М.Г. Каратопраклиевой и С.З. Джамалова. В этих работах для уравнения смешанного типа второго рода второго порядка изучены нелокальные краевые задачи в ограниченных областях. Такие задачи для уравнения смешанного типа первого рода в трехмерном случае (в частости, для уравнения Трикоми) в неограниченных областях изучены в работах С.З. Джамалова и Х. Туракулова. Для уравнений смешанного типа второго рода в неограниченных областях нелокальные краевые задачи в многомерном случае практически не исследованы. С этой целью в данной работе в неограниченном параллелепипеде формулируется и изучается нелокальная краевая задача периодического типа для трехмерного уравнения смешанного типа второго рода второго порядка. Для доказательства единственности обобщённого решения используется метод интегралов энергии. Для доказательства существования обобщённого решения сначала используется преобразование Фурье и в результате получается новая задача на плоскости, а для разрешимости этой задачи используется методы «ε-регуляризации»и априорных оценок. Используя эти методы, и равенство Парсеваля, докажем единственность, существование и гладкость обобщённого решения одной нелокальной краевой задачи периодического типа для трехмерного уравнения смешанного типа второго рода второго порядка. As is known, A.V. Bitsadze in his studies pointed out that the Dirichlet problem for a mixed-type equation, in particular for a degenerate hyperbolic-parabolic equation, is ill-posed. The question naturally arises: is it possible to replace the conditions of the Dirichlet problem with other conditions covering the entire boundary, which will ensure the well-posedness of the problem? For the first time, such boundary value problems (nonlocal boundary value problems) for a mixed-type equation were proposed and studied in the works of F.I. Frankl when solving the gas-dynamic problem of subsonic flow around airfoils with a supersonic zone ending in a direct shock wave. Problems close in formulation to a mixed-type equation of the second order were considered in the studies by A.N. Terekhov, S.N. Glazatov, M.G. Karatopraklieva and S.Z. Dzhamalov. In these papers, nonlocal boundary value problems in bounded domains are studied for a mixed-type equation of the second kind of the second order. Such problems for a mixed-type equation of the first kind in the three-dimensional case (in particular, for the Tricomi equation) in unbounded domains are studied in the works of S.Z. Dzhamalov and H. Turakulov. For mixed-type equations of the second kind in unbounded domains, nonlocal boundary value problems in the multidimensional case are practically not studied. In this article, nonlocal boundary value problem of periodic type for a mixed-type equation of the second kind of the second order, is formulated and studied in an unbounded parallelepiped. To prove the uniqueness of the generalized solution, the method of energy integrals is used. To prove the existence of a generalized solution, the Fourier transforms is used and as a result, a new problem is obtained on the plane. And for the solvability of this problem, the methods of “ε-regularization”and a priori estimates are used. The uniqueness, existence, and smoothness of a generalized solution of a nonlocal boundary value problem of periodic type for a three-dimensional mixed-type equation of the second kind of the second order are proved using above-mentioned methods and Parseval equality.