Phase separation is quite common in formulations for hydrophobic active pharmaceutical ingredients (APIs) due to their thermodynamic instability in a supersaturated state during in vitro dissolution or in vivo absorption. Phase separation possibly accompanies the formation of a disordered drug-rich phase, but this is still not thoroughly understood. In this study, the phase separation of supersaturated axitinib (Axi) in media with or without polymers was evaluated via multiple analytical methods, including UV–vis and fluorescence spectroscopy, dynamic light scattering, and microscopy. The phase separation of Axi occurred at an Axi concentration of 25–30 µg/mL in the media, while the addition of quantitative hypromellose acetate succinate (HPMCAS) MG and povidone (PVP) K30 did not alter its phase separation concentration. The second scattering dispersion phase of the system exhibited superior stability and reversibility as the formative filamentous crystalline condensates could disintegrate upon dilution. These disparate analyses consistently detected the phase separation of Axi. This manuscript could provide a better understanding of the supersaturation state of hydrophobic APIs upon pharmaceutical application.
Read full abstract