Fatigue crack growth (FCG) tests were conducted on superelastic NiTi alloys, demonstrating that the da/dN-ΔK curve in the stable crack growth stage exhibits two transition points in the double-logarithmic coordinate system, presenting a tri-linear form. Fracture surface SEM analysis indicated that the FCG mechanisms differ across the three stages on either side of the two transition points. This phenomenon is first discovered and studied in NiTi alloys. The study investigated the size and position relationships between the characteristic zones at the crack tip (phase transformation zone and cyclic plasticity zone) and the microstructure during crack growth. Based on this, a critical prediction method for the transition points was established and found to be in close agreement with the experimental results. Finally, the formation mechanism of the double transition points was explained by combining the SEM results of the fracture surfaces with every stage of FCG.
Read full abstract