A powerful result in theoretical cosmology states that a subset of anisotropic Bianchi models can be seen as the homogeneous limit of (standard) linear cosmological perturbations. Such models are precisely those leading to Friedmann spacetimes in the limit of zero anisotropy. Building on previous works, we give a comprehensive exposition of this result, and perform the detailed identification between anisotropic degrees of freedom and their corresponding scalar, vector, and tensor perturbations of standard perturbation theory. In particular, we find that anisotropic models very close to open (i.e., negatively curved) Friedmann spaces correspond to some type of super-curvature perturbations. As a consequence, provided anisotropy is mild, its effects on all types of cosmological observables can always be computed as simple extensions of the standard techniques used in relativistic perturbation theory around Friedmann models. This fact opens the possibility to consistently constrain, for all cosmological observables, the presence of large scale anisotropies on the top of the stochastic fluctuations.
Read full abstract