The resurrection axioms are forcing axioms introduced recently by Hamkins and Johnstone, developing on ideas of Chalons and Veličković. We introduce a stronger form of resurrection axioms (the iterated resurrection axioms [Formula: see text] for a class of forcings [Formula: see text] and a given ordinal [Formula: see text]), and show that [Formula: see text] implies generic absoluteness for the first-order theory of [Formula: see text] with respect to forcings in [Formula: see text] preserving the axiom, where [Formula: see text] is a cardinal which depends on [Formula: see text] ([Formula: see text] if [Formula: see text] is any among the classes of countably closed, proper, semiproper, stationary set preserving forcings). We also prove that the consistency strength of these axioms is below that of a Mahlo cardinal for most forcing classes, and below that of a stationary limit of supercompact cardinals for the class of stationary set preserving posets. Moreover, we outline that simultaneous generic absoluteness for [Formula: see text] with respect to [Formula: see text] and for [Formula: see text] with respect to [Formula: see text] with [Formula: see text] is in principle possible, and we present several natural models of the Morse–Kelley set theory where this phenomenon occurs (even for all [Formula: see text] simultaneously). Finally, we compare the iterated resurrection axioms (and the generic absoluteness results we can draw from them) with a variety of other forcing axioms, and also with the generic absoluteness results by Woodin and the second author.
Read full abstract