This study identified genetic mutations linked to resistance to pyrethroid insecticides in the plant pest Lygus pratensis. The voltage-gated sodium channel (VGSC) gene was cloned, revealing two mutations (Met918Thr and Leu1014Phe) in laboratory strains and field populations from Inner Mongolia, resulting in variable pyrethroid resistance. A 3D model of LpVGSC was created using homology modeling, and pyrethroid binding patterns were analyzed via molecular docking. Molecular dynamics simulations confirmed structural stability changes and binding stability of pyrethroids to VGSC sites. Mutation frequencies of homozygous and heterozygous genotypes did not exceed 40 and 20%, respectively. Toxicity tests showed high resistance to λ-cyhalothrin (LC50:401.31 ng/cm2). The kdr (L1014F) and superkdr (M918T) mutations weakened interaction forces, reducing pyrethroid binding. M918T and L1014F mutations are predicted to reduce Type I pyrethroid affinity, suggesting Type II pyrethroids may be more effective against resistant strains. These findings aid in resistance management and insecticide design.
Read full abstract