Sustaining a metabolically active electroactive biofilm (EAB) is essential for the high efficiency and durable operation of microbial fuel cells (MFCs). However, EABs usually decay during long-term operation, and, until now, the causes remain unknown. Here, we report that lysogenic phages can cause EAB decay in Geobacter sulfurreducens fuel cells. A cross-streak agar assay and bioinformatic analysis revealed the presence of prophages on the G. sulfurreducens genome, and a mitomycin C induction assay revealed the lysogenic to lytic transition of those prophages, resulting in a progressive decay in both current generation and the EAB. Furthermore, the addition of phages purified from decayed EAB resulted in accelerated decay of the EAB, thereafter contributing to a faster decline in current generation; otherwise, deleting prophage-related genes rescued the decay process. Our study provides the first evidence of an interaction between phages and electroactive bacteria and suggests that attack by phages is a primary cause of EAB decay, having significant implications in bioelectrochemical systems.