This study demonstrates that intravenous infusion of the cell-penetrant thiol ester, L-cysteine ethyl ester (L-CYSee), to adult male Sprague-Dawley rats elicited (a) minor alterations in frequency of breathing, expiratory time, tidal volume, minute ventilation, or expiratory drive but pronounced changes in inspiratory time, end-inspiratory and expiratory pauses, peak inspiratory and expiratory flows, EF50, relaxation time, apneic pause, inspiratory drive and non-eupneic breathing index, (b) minimal changes in arterial blood-gas (ABG) chemistry (pH, pCO2, pO2, SO2) and Alveolar-arterial (A-a) gradient (index of alveolar gas exchange), and (c) minimal changes in antinociception (tail-flick latency). Subsequent injection of morphine (10 mg/kg, IV) elicited markedly smaller effects on the above parameters, ABG chemistry, and A-a gradient in rats receiving L-CYSee, whereas morphine antinociception was not impaired. Infusions of L-cysteine or L-serine ethyl ester (oxygen rather than sulfur moiety), did not affect morphine actions on ABG chemistry or A-a gradient. L-CYSee (250 μmol/kg, IV) injection elicited dramatic changes in ventilatory parameters given 15 min after injection of morphine in rats receiving L-CYSee. Our findings suggest that (a) L-CYSee acts in neurons that drive ventilation, (b) L-CYSee reversal of the adverse actions of morphine on ventilation, ABG chemistry and A-a gradient may be via modulation of intracellular signaling pathways activated by morphine rather than by direct antagonism of opioid receptors since morphine antinociception was not diminished by L-CYSee, and (c) the thiol moiety of L-CYSee is vital to efficacy, (d) intracellular conversion of L-CYSee to an S-nitrosylated form may be part of its mechanism of action.