A novel hydrogen production system based on a sulfur-iodine (S–I) thermochemical water-splitting cycle driven by 100% solar energy is proposed in this paper. A solar power tower (SPT) with thermal energy storage (TES) is used to supply heat stably. Considering the large heat recovery potential in the S–I cycle, a supercritical carbon dioxide (S–CO2) Brayton cycle is used to improve the system performance. A complete thermodynamic model and detailed description of the energy and exergy flow from the sun to SPT, TES, S–I cycle, S–CO2 Brayton cycle and hydrogen is obtained. The system performance in the base case and actual weather conditions are obtained. The influence of major parameters on the system performance is investigated. The results show that the hydrogen production rate is 3.52 mol s−1 in the base case. Using the S–CO2 Brayton cycle, the overall energy and exergy efficiency can be increased from 10.6%, 11.1% to 30.5%, 32.4%, respectively. The solar part accounts for 48.2% of the total energy loss and 76.1% of the exergy destruction. In addition, increasing DNI, the maximum reaction temperature, the regeneration ratio of the S–CO2 Brayton cycle (RR) can improve the system performance, and the system efficiency is more sensitive to RR.
Read full abstract