The generation of difluorocarbene from difluoromethane bis(sulfonium ylide) 1 through spin-forbidden excitation under irradiation with 450 nm blue light was reported. The formation of difluorocarbene was confirmed by its reaction with styrene derivatives for the generation of difluorocyclopropanation and insertion into RX-H bonds (X = O, S) for the generation of RXCF2H. The spin-forbidden excitation mechanism for the formation of difluorocarbene from difluoromethane bis(sulfonium ylide) was supported by spectroscopic and kinetic studies as well as computational chemistry. The homolytic cleavage of two S-C bonds in compound 1 under irradiation was confirmed by time-resolved EPR spectroscopic studies of the precursor's free-radical-capturing reaction, as well as the isolation of the dimer of dimethyl (phenylthiol)malonyl radical. Further studies showed that the homolytic cleavage process occurred asynchronously in the solvent cage based on the isotope-labeled scrambling experiments and DFT calculations.
Read full abstract