The economic and environmental consequences of inefficient use of nitrogen (N) fertiliser in agricultural crops is of concern worldwide, so new crop varieties with improved nitrogen use efficiency (NUE) are sought. Here, we report the first study of mapping quantitative trait loci (QTL) for nitrogen physiology traits in sugarcane. QTL analysis was undertaken for each parent of a segregating bi-parental sugarcane mapping population. We grew 168 progeny under limiting (0.2 mM NH4NO3) and non-limiting (5.0 mM NH4NO3) N supplies in two glasshouse experiments. Significant marker-trait associations (MTA) were detected in each treatment for shoot dry weight, root dry weight, total shoot N, shoot internal NUE (iNUE; measured as units shoot dry weight per unit N), leaf protein content and glutamine synthetase (GS) activity. MTA for GS activity did not co-locate with other traits except leaf protein content, indicating that variation in GS activity is not linked to plant size or iNUE during early growth. Under high N, there were no significant MTA for iNUE among markers from the male parent, Q165, an Australian commercial cultivar, but six MTA were found for markers inherited from the female parent, IJ76–514, a Saccharum officinarum ancestral variety. The results indicate that variation for iNUE under high N may be lower in commercial varieties than unimproved genotypes. Further, four MTA were consistent with previous field-based research on sugar and biomass production. Our study provides initial evidence that QTL may be incorporated in sugarcane breeding programs targeting improved NUE.
Read full abstract