In the next-generation communication system, near-field communication (NFC) is a key enabler of contactless transactions, including mobile payments, ticketing, and access control. With the growing demand for contactless solutions, NFC technology will play a pivotal role in enabling secure and convenient payment experiences across various sectors. In contrast, Internet of Things (IoT) devices such as phones’ Point of Sale (PoS) constitute limited battery life and finite computational resources that act as a bottleneck to doing the authentication in a minimal amount of time. Because of this, it garnered considerable attention in both academic and industrial realms. To overcome this, in this work we consider the Multiple Mobile Edge Computing (MEC) as an effective solution that provides extensive computation to PoS connected to it. To address the above, this work considers the PoS-enabled multi-MEC network to guarantee NFC communication reliably and effectively. For this, we formulate the joint optimization problem to maximize the probability of successful authentication while minimizing the queueing delay by jointly optimizing the computation and communication resources by utilizing a multi-agent reinforcement learning optimization approach. Through extensive simulations based on real-world scenarios, the effectiveness of the proposed approach was demonstrated. The results demonstrate that adjusting the complexity and learning rates of the model, coupled with strategic allocation of edge resources, significantly increased authentication success rates. Furthermore, the optimal allocation strategy was found to be crucial in reducing latency and improving authentication success by approximately 9.75%, surpassing other approaches. This study highlights the importance of resource management in optimizing MEC systems, paving the way for advancements in establishing secure, efficient, and dependable systems within the Internet of Things framework.
Read full abstract