BACKGROUNDDespite overt insulin resistance, adipocytes of genetically obese Zucker rats accumulate the excess of calorie intake in the form of lipids.AIMTo investigate whether factors can replace or reinforce insulin lipogenic action by exploring glucose uptake activation by hydrogen peroxide, since it is produced by monoamine oxidase (MAO) and semicarbazide-sensitive amine oxidase (SSAO) in adipocytes.METHODS 3H-2-deoxyglucose uptake (2-DG) was determined in adipocytes from obese and lean rats in response to insulin or MAO and SSAO substrates such as tyramine and benzylamine. 14C-tyramine oxidation and binding of imidazolinic radioligands [3H-Idazoxan, 3H-(2-benzofuranyl)-2-imidazoline] were studied in adipocytes, the liver, and muscle. The influence of in vivo administration of tyramine + vanadium on glucose handling was assessed in lean and obese rats.RESULTS2-DG uptake and lipogenesis stimulation by insulin were dampened in adipocytes from obese rats, when compared to their lean littermates. Tyramine and benzylamine activation of hexose uptake was vanadate-dependent and was also limited, while MAO was increased and SSAO decreased. These changes were adipocyte-specific and accompanied by a greater number of imidazoline I2 binding sites in the obese rat, when compared to the lean. In vitro, tyramine precluded the binding to I2 sites, while in vivo, its administration together with vanadium lowered fasting plasma levels of glucose and triacylglycerols in obese rats. CONCLUSIONThe adipocytes from obese Zucker rats exhibit increased MAO activity and imidazoline binding site number. However, probably as a consequence of SSAO down-regulation, the glucose transport stimulation by tyramine is decreased as much as that of insulin in these insulin-resistant adipocytes. The adipocyte amine oxidases deserve more studies with respect to their putative contribution to the management of glucose and lipid handling.